TUM – Technische Universität München Menü
Gitter aus Spinwirbeln
Gitter aus Spinwirbeln (Bild: TUM)
  • Forschung

Kompakte und langlebige Speicherung von Informationen in magnetischen WirbelnMagnetische Monopole löschen Daten

Ein vor 80 Jahren postuliertes physikalisches Phänomen könnte den entscheidenden Schritt zur Realisierung neuartiger, extrem kompakter und langlebiger Datenspeicher durch magnetische Wirbel liefern. Wissenschaftler der Technischen Universität München (TUM), der Technischen Universität Dresden und der Universität zu Köln fanden heraus, dass die Skyrmionen genannten Wirbelstrukturen mit Hilfe magnetischer Monopole gelöscht werden können.

Jeder kennt den Schulversuch, bei dem Eisenspäne auf ein Blatt Papier verteilt werden, unter dem ein Stabmagnet liegt. Die Späne ordnen sich dabei entlang der Feldlinien aus und zeigen Nord- und Südpol des Magneten. Egal wie oft man ihn teilt, der Stabmagnet weist immer einen Nord- und einen Südpol auf. Anfang der 30er-Jahre des vorigen Jahrhunderts jedoch postulierte der Physiker Paul A. M. Dirac ein Teilchen, das als magnetisches Pendant des Elektrons nur einen der beiden Pole besitzen und nur eine magnetische Elementarladung tragen sollte.

Auf der Suche nach einer einfachen Methode zur Beobachtung der magnetischen Wirbel kooperierten Forscher um TUM-Physiker Prof. Christian Pfleiderer zunächst mit der Gruppe um Professor Lukas Eng an der TU Dresden, die ein Magnet-Kraftmikroskop besitzen. Als sie mit diesem Mikroskop die Oberfläche der Materialien abtasteten, beobachteten sie die Wirbel nicht nur zum ersten Mal direkt sondern auch, dass benachbarte Skyrmionen miteinander verschmelzen.

Computersimulationen der Kölner Kooperationspartner um Professor Achim Rosch und Experimente an der Forschungs-Neutronenquelle FRM II der TUM zeigten, dass hier magnetische Monopole am Werk waren, die die Wirbel wie ein Reißverschluss zusammen ziehen. Damit ist es nicht nur möglich, in Skyrmionen gespeicherte Informationen zu lesen, sondern sie auch wieder zu löschen.

Kompakte und langlebige Datenspeicher

Eine wichtige Anwendung der magnetischen Wirbel könnten zukünftige, extrem kompakte und langlebige Datenspeicher sein. Während man für ein magnetisches Speicherbit einer modernen Festplatte etwa eine Million Atome braucht, sind die kleinsten bekannten Skyrmionen in magnetischen Materialien nur etwa 15 Atome groß.

Gleichzeitig benötigt das Verschieben der Wirbel 100.000 mal weniger Strom als das Verschieben magnetischer Speicherbits auf der Basis konventioneller magnetischer Materialien, so dass man Informationen so besonders kontrolliert verarbeiten könnte. Die vielleicht interessanteste Eigenschaft der Skyrmionen ist jedoch, dass sie wie ein Knoten in einer Schnur, besonders stabil sind.

Entdeckt wurden die magnetischen Wirbelstrukturen im Jahre 2009 bei Neutronenstreu-Experimenten an Mangansilizid in der Forschungs-Neutronenquelle FRM II durch ein Team um Christian Pfleiderer und Achim Rosch. Seit dem verzeichnet das neue Forschungsgebiet weltweit großes Interesse und rasante Fortschritte. „Waren zunächst extrem tiefe Temperaturen nötig, so sind heute auch Materialien bekannt, in denen Skyrmionen bei Raumtemperatur auftreten“, sagt Christian Pfleiderer, Professor für magnetische Materialien der TU München.

„Mit der magnetischen Kraftmikroskopie haben wir endlich eine Methode zur Hand, die uns zum ersten mal erlaubt die Skyrmionen in Anwendungsrelevanten Systemen direkt zu beobachten. Dies ist ein entscheidender Schritt in Richtung einer echten technischen Nutzung.“

Die Arbeiten wurden gefördert aus Mitteln des European Research Council, der Deutschen Forschungsgemeinschaft, des Australian Research Council, der TUM Graduate School und der Bonn-Cologne Graduate School.

Bildmaterial:
mediatum.ub.tum.de

Publikation:
Unwinding of a Skyrmion Lattice by Magnetic Monopoles, P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch, Science, Advanced online publication, 31 May 2013, DOI: nach Ablauf der Sperrfrist

Frühere Veröffentlichungen:


Kontakt:
Prof. Dr. Christian Pfleiderer
Technische Universität München
Physik-Department
T: +49.89.289-14720
E: christian.pfleiderer@frm2.tum.de
W: www.e21.ph.tum.de

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg

Weitere Artikel zum Thema auf www.tum.de:

Professor Christian Pfleiderer erhält Max-Born-Preis.

Professor Christian Pfleiderer erhält Max-Born-Preis

"Für seine fundamentalen Beiträge zu neuartigen Formen magnetischer Ordnung, insbesondere von Gittern aus Skyrmionen und deren Manipulation durch elektrische Ströme", schreibt die Deutsche Physikalische Gesellschaft, erhält...

Magnetische Spin-Wellen in einem Festkörper -­ Illustration: Christoph Hohmann / NIM

Die Zähmung der magnetischen Wirbel

Mit magnetischen Wirbelstrukturen, sogenannten Skyrmionen, könnte man sehr effizient Informationen speichern oder verarbeiten. Auch als Hochfrequenz-Bausteine könnten sie eingesetzt werden. Erstmals hat nun ein Team von...

Physiker Josef Lichtinger begutachtet die

Lithium im Gehirn

Experimente mit Neutronen an der Technischen Universität München (TUM) zeigen, dass sich in der weißen Gehirnsubstanz das Antidepressivum Lithium stärker anreichert als in der grauen. Das lässt vermuten, dass es anders...

Metallisches Terbium. (Foto: Astrid Eckert / TUM)

Radionuklid-Therapie gegen kleine Tumore und Metastasen

Im Kampf gegen Krebs könnte der Medizin schon bald ein neuer Verbündeter zur Seite stehen: Terbium-161. Seine wichtigste Waffe: Konversions- und Auger-Elektronen. Aufbauend auf dem Radionuklid Terbium-161 haben...

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). (Foto: Andrea Voit / TUM)

Bund stärkt Neutronenforschung in Garching

Die wissenschaftliche Nutzung der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) durch deutsche und internationale Forscher wird für die nächsten zehn Jahre mit insgesamt 198 Millionen Euro vom Bundesministerium...

Prof. Dr. Pfleiderer bereitet eine Probe in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz vor. (Photo: Wenzel Schuermann / TUM)

Strom bewegt magnetische Wirbel

Schneller, kleiner und energiesparender sollen die Rechner der Zukunft sein. Dazu müssen die Daten schneller geschrieben und verarbeitet werden. Diesem Ziel sind Physiker der Technischen Universität München (TUM) und der...

Dreiachsen-Spektrometer PUMA im FRM II. (Foto: Wenzel Schuermann / TUM)

Supraleitung bei hohen Temperaturen

Magnetische Wechselwirkungen könnten bewirken, dass bestimmte Materialien Strom verlustfrei leiten, und zwar bei höheren Temperaturen als klassische Supraleiter wie etwa Blei. Dazu haben Wissenschaftler vom...

Blick in die Probenkammer der Positronenquelle. (Foto: Jakob Mayer / TUM)

Mit Antiteilchen auf Fehlersuche

Die geheimnisvolle Antimaterie ist nicht nur exotisches Beiwerk in Kinofilmen wie „Illuminati“, sondern auch ein faszinierendes Wissenschaftsgebiet. An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der...

Neutronenstrahlung eröffnet wertvolle Einblicke in die Renaissance-Köpfchen des Florentiner Paradiestores. (Foto: Ralf Schulze / TUM)

Prophet unter der Neutronenlupe

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein. So werden an der...

Neutronen-Radiografie von Wasserablagerungen in der Isolierung von Flugzeugen. (Bild: casas)

Dem Wasser in Flugzeugen auf der Spur

Wenn es beim Landeanflug von der Decke der Flugzeugkabine tropft, dann ist das nur eine von vielen unangenehmen Folgen von zu viel Feuchtigkeit in der Isolierung des Flugzeugrumpfes. Physiker der Technischen Universität...

Römische Merkur Statuette. (Foto: Martin Mühlbauer)

Nippes aus dem alten Rom

Einen Blick in eine römische Gottheit hinein warfen jetzt Physiker an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM). Sie untersuchten für die Archäologische...

Sebastian Mühlbauer bei der Vorbereitung eines Experiments

Magnetische Wirbelfäden in der Elektronensuppe

Physiker der Technischen Universität München (TUM) und der Universität zu Köln haben in der metallischen Verbindung Mangansilizium eine neue Form magnetischer Ordnung entdeckt. Das Gitter aus magnetischen Wirbelfäden, über...

Uwe Wasmuth im FRM II mit seinem Werkstück. (Foto: TU München)

Spannungen in Stahl gegossen

Spannungen in Metallen führen zu Verformungen und schlimmstenfalls zu Rissen im Material. Betroffen von solchen Eigenspannungen sind vor allem Werkstücke, die aus zwei verschiedenen Metallen bestehen, wie etwa...

Ein glühender Metalltropfen schwebt zwischen zwei Spulen im Neutronenstrahl. (Foto: Andrea Voit/TUM)

Schwerelose Experimente mit geschmolzenem Metall

Untersuchungen, die sonst nur in der Schwerelosigkeit des Weltalls gelingen, führt Professor Andreas Meyer vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln mit einem neuen Messverfahren derzeit an der...

3D-Tomografie einer Säugetierlunge. (Bild: Robert Metzke, Burkhard Schillinger, TU München)

Neue Strategien könnten Tausenden das Leben retten

Aktuellen Schätzungen zufolge werden in Europa jedes Jahr mehr als 100.000 Patienten mit akutem Lungenversagen intensivmedizinisch behandelt. Müssen Patienten mehrere Tage künstlich beatmet werden, sinkt die Überlebensrate...

Ein Zylinder aus mit Neutronen dotiertem Silizium. (Foto: W. Schürmann, TU München)

Halbleiter für energiesparende Hochleistungselektronik

Zwischen Thomas Alva Edison und George Westinghouse tobte um 1880 ein erbitterter Streit: Edison setzte auf Gleichstrom, Westinghouse wollte Wechselstrom-Netze einführen. Er hatte erkannt, dass es viel praktischer war, den...

Reaktorbecken im FRM II. (Foto: Andreas Heddergott)

TUM-Forschungsreaktor liefert die ersten Neutronen

Die Forschungs-Neutronenquelle FRM-II der Technischen Universität München in Garching hat heute die ersten Neutronen erzeugt. "Damit ist die Inbetriebsetzung der weltweit modernsten Neutronenquelle in das entscheidende...