Physiker Josef Lichtinger begutachtet die
J. Lichtinger begutachtet Gehirnschnitte im FRM II - Foto: W. Schürmann / TUM
  • Forschung

Neutronen zeigen Anreicherung von Antidepressivum im GehirnLithium im Gehirn

Experimente mit Neutronen an der Technischen Universität München (TUM) zeigen, dass sich in der weißen Gehirnsubstanz das Antidepressivum Lithium stärker anreichert als in der grauen. Das lässt vermuten, dass es anders wirkt als synthetische Psychopharmaka. Die Gewebestücke wurden an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM mit einem eigens entwickelten Detektor untersucht, um eine genaue Landkarte der Verteilung von Lithium im Gehirn anzufertigen und so die Wirkung des Stoffs auf die menschliche Psyche besser verstehen zu können.

Bekannt ist Lithium vor allem aufgrund seines Einsatzes in wieder aufladbaren Batterien. Doch seit Jahrzehnten wird Lithium auch in der Behandlung bei so verschiedenen psychischen Erkrankungen wie Depressionen, Manien und bipolaren Störungen eingesetzt. Die genaue biologische Wirkungsweise in bestimmten Gehirnregionen ist jedoch noch kaum verstanden. Bekannt ist, dass Lithium die Stimmung aufhellt und das Aggressionspotential senkt.

Weil es sehr schwer zu dosieren ist, scheuen sich Ärzte, dieses „Universalmedikament“ einzusetzen. Mehrere internationale Studien haben jedoch gezeigt, dass ein höherer natürlicher Lithiumgehalt im Trinkwasser zu einer niedrigeren Suizidrate in der Bevölkerung führt. Denn Lithium wird auch bei unbehandelten Personen im Gehirn eingelagert. Deshalb könnte Lithium, das bisher noch als relativ unbedeutend angesehen wurde, ein essentielles Spurenelement für den Menschen sein.

Lithiumnachweis mit Neutronen

Dem geht nun Josef Lichtinger in seiner Doktorarbeit am Lehrstuhl für Physik der Hadronen und Kerne (E12) der TUM nach. Von der Rechtsmedizin der Ludwig-Maximilians-Universität München (LMU) erhielt er Gewebeproben von Patienten, die mit Lithium behandelt wurden, unbehandelten Patienten und gesunden Vergleichspersonen. Diese setzte der Physiker am Messplatz der Prompten Gamma Aktivierungsanalyse am FRM II einem fokussierten kalten Neutronenstrahl höchster Intensität aus.

Lithium reagiert sehr spezifisch mit Neutronen und zerfällt in ein Helium- sowie ein Tritiumatom. Mit einem speziellen Detektor, den Josef Lichtinger entwickelt hat, können deshalb so geringe Mengen wie 0,45 Nanogramm Lithium pro Gramm Gewebe gemessen werden. „So genau wie mit Neutronen kann man das mit keiner anderen Methode nachweisen“, sagt Jutta Schöpfer, Rechtsmedizinerin an der LMU, die mehrere Forschungsprojekte zur Lithiumverteilung im menschlichen Körper betreut.

Lithium wirkt auf die Nervenbahnen

Seine Ergebnisse erstaunen: Nur bei den Proben eines depressiven Patienten, der mit Lithium behandelt worden war, beobachtete Josef Lichtinger eine höhere Anreicherung des Lithium in der sogenannten weißen Substanz. Das ist der Bereich im menschlichen Gehirn, in dem die Nervenbahnen laufen. Der Lithiumgehalt in der benachbarten grauen Substanz war 3-4-fach geringer. Die Lithium-Anreicherung in der weißen Substanz konnte bei mehreren unbehandelten depressiven Patienten dagegen nicht beobachtet werden. Das weist darauf hin, dass Lithium nicht wie andere Psychopharmaka im Zwischenraum der Nervenzellen wirkt, sondern in den Nervenbahnen selbst.

Nun will Josef Lichtinger weitere Gewebeproben an der Forschungs-Neutronenquelle in Garching untersuchen, um seine Ergebnisse zu bestätigen und zu erweitern. Am Ende des Projekts steht eine Landkarte des Gehirns eines gesunden und eines depressiven Patienten, die ortsaufgelöst die Lithiumanreicherung zeigt. So könnte man das Universalmedikament Lithium zukünftig noch zielgenauer und kontrollierter gegen psychische Erkrankungen einsetzen. Die Arbeit wird von der Deutschen Forschungsgemeinschaft (DFG) unterstützt.

Publikation:

J. Lichtinger et. al, „Position sensitive measurement of lithium traces in brain tissue with neutrons“, Med. Phys. 40, 023501 (2013) – DOI: 10.1118/1.4774053

Kontakt:

Josef Lichtinger
Physik-Department, Lehrstuhl E12
Technische Universität München
James-Franck-Str., 85748 Garching, Germany
E-Mail – Tel.: +49 89 289 12464

Corporate Communications Center

Technische Universität München Andrea Voit / Andreas Battenberg
andreas.battenberg(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Gitter aus Spinwirbeln

Magnetische Monopole löschen Daten

Ein vor 80 Jahren postuliertes physikalisches Phänomen könnte den entscheidenden Schritt zur Realisierung neuartiger, extrem kompakter und langlebiger Datenspeicher durch magnetische Wirbel liefern. Wissenschaftler der...

Metallisches Terbium. (Foto: Astrid Eckert / TUM)

Radionuklid-Therapie gegen kleine Tumore und Metastasen

Im Kampf gegen Krebs könnte der Medizin schon bald ein neuer Verbündeter zur Seite stehen: Terbium-161. Seine wichtigste Waffe: Konversions- und Auger-Elektronen. Aufbauend auf dem Radionuklid Terbium-161 haben...

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). (Foto: Andrea Voit / TUM)

Bund stärkt Neutronenforschung in Garching

Die wissenschaftliche Nutzung der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) durch deutsche und internationale Forscher wird für die nächsten zehn Jahre mit insgesamt 198 Millionen Euro vom Bundesministerium...

Prof. Dr. Pfleiderer bereitet eine Probe in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz vor. (Photo: Wenzel Schuermann / TUM)

Strom bewegt magnetische Wirbel

Schneller, kleiner und energiesparender sollen die Rechner der Zukunft sein. Dazu müssen die Daten schneller geschrieben und verarbeitet werden. Diesem Ziel sind Physiker der Technischen Universität München (TUM) und der...

Dreiachsen-Spektrometer PUMA im FRM II. (Foto: Wenzel Schuermann / TUM)

Supraleitung bei hohen Temperaturen

Magnetische Wechselwirkungen könnten bewirken, dass bestimmte Materialien Strom verlustfrei leiten, und zwar bei höheren Temperaturen als klassische Supraleiter wie etwa Blei. Dazu haben Wissenschaftler vom...

Blick in die Probenkammer der Positronenquelle. (Foto: Jakob Mayer / TUM)

Mit Antiteilchen auf Fehlersuche

Die geheimnisvolle Antimaterie ist nicht nur exotisches Beiwerk in Kinofilmen wie „Illuminati“, sondern auch ein faszinierendes Wissenschaftsgebiet. An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der...

Neutronenstrahlung eröffnet wertvolle Einblicke in die Renaissance-Köpfchen des Florentiner Paradiestores. (Foto: Ralf Schulze / TUM)

Prophet unter der Neutronenlupe

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein. So werden an der...

Neutronen-Radiografie von Wasserablagerungen in der Isolierung von Flugzeugen. (Bild: casas)

Dem Wasser in Flugzeugen auf der Spur

Wenn es beim Landeanflug von der Decke der Flugzeugkabine tropft, dann ist das nur eine von vielen unangenehmen Folgen von zu viel Feuchtigkeit in der Isolierung des Flugzeugrumpfes. Physiker der Technischen Universität...

Römische Merkur Statuette. (Foto: Martin Mühlbauer)

Nippes aus dem alten Rom

Einen Blick in eine römische Gottheit hinein warfen jetzt Physiker an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM). Sie untersuchten für die Archäologische...

Sebastian Mühlbauer bei der Vorbereitung eines Experiments

Magnetische Wirbelfäden in der Elektronensuppe

Physiker der Technischen Universität München (TUM) und der Universität zu Köln haben in der metallischen Verbindung Mangansilizium eine neue Form magnetischer Ordnung entdeckt. Das Gitter aus magnetischen Wirbelfäden, über...

Uwe Wasmuth im FRM II mit seinem Werkstück. (Foto: TU München)

Spannungen in Stahl gegossen

Spannungen in Metallen führen zu Verformungen und schlimmstenfalls zu Rissen im Material. Betroffen von solchen Eigenspannungen sind vor allem Werkstücke, die aus zwei verschiedenen Metallen bestehen, wie etwa...

Ein glühender Metalltropfen schwebt zwischen zwei Spulen im Neutronenstrahl. (Foto: Andrea Voit/TUM)

Schwerelose Experimente mit geschmolzenem Metall

Untersuchungen, die sonst nur in der Schwerelosigkeit des Weltalls gelingen, führt Professor Andreas Meyer vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln mit einem neuen Messverfahren derzeit an der...

3D-Tomografie einer Säugetierlunge. (Bild: Robert Metzke, Burkhard Schillinger, TU München)

Neue Strategien könnten Tausenden das Leben retten

Aktuellen Schätzungen zufolge werden in Europa jedes Jahr mehr als 100.000 Patienten mit akutem Lungenversagen intensivmedizinisch behandelt. Müssen Patienten mehrere Tage künstlich beatmet werden, sinkt die Überlebensrate...

Ein Zylinder aus mit Neutronen dotiertem Silizium. (Foto: W. Schürmann, TU München)

Halbleiter für energiesparende Hochleistungselektronik

Zwischen Thomas Alva Edison und George Westinghouse tobte um 1880 ein erbitterter Streit: Edison setzte auf Gleichstrom, Westinghouse wollte Wechselstrom-Netze einführen. Er hatte erkannt, dass es viel praktischer war, den...

Reaktorbecken im FRM II. (Foto: Andreas Heddergott)

TUM-Forschungsreaktor liefert die ersten Neutronen

Die Forschungs-Neutronenquelle FRM-II der Technischen Universität München in Garching hat heute die ersten Neutronen erzeugt. "Damit ist die Inbetriebsetzung der weltweit modernsten Neutronenquelle in das entscheidende...