TUM – Technische Universität München Menü
Eine App liefert intuitive graphische Darstellungen von Quantenzuständen gekoppelter Spins - Bild: Steffen Glaser / TUM
Eine App liefert intuitive graphische Darstellungen von Quantenzuständen gekoppelter Spins - Bild: Steffen Glaser / TUM
Bild in höherer Qualität herunterladen
  • Forschung

App vermittelt Einblicke in die Quantenwelt gekoppelter Kernspins

Die Visualisierung der „Matrix“

Kernspintomografiebilder sind ein wichtiges Diagnoseinstrument. Der dabei erzielbare Kontrast hängt davon ab wie gut es gelingt, die den bildgebenden Signalen zugrunde liegenden Kernspins gezielt zu beeinflussen. Mathematisch werden die Eigenschaften von Kernspins durch eine spezielle Matrix beschrieben. Einem Team um Professor Steffen Glaser an der Technischen Universität München (TUM) ist es nun erstmals gelungen, eine allgemeine und intuitive graphische Darstellung der in dieser Matrix enthaltenen Informationen für beliebige Quantenzustände gekoppelter Spins zu entwickeln.

Atome und ihre Bestandteile gehorchen den Gesetzen der Quantenmechanik, die oft die Grenzen unserer Vorstellungskraft übersteigen. Einen Tennisball können wir in unserer Alltagswelt mit jeder beliebigen Geschwindigkeit um seine eigene Achse drehen. Kernspins dagegen können sich nur mit einer einzigen Geschwindigkeit entweder rechtsherum oder linksherum drehen – ihre Rotation ist quantisiert.

Die Arbeitsgruppe von Professor Steffen Glaser an der Fakultät für Chemie der TU München entwickelt mathematische Verfahren, um das Verhalten von Kernspins gezielt und mit maximaler Effizienz steuern zu können. Unter anderem gelang es damit bereits, den bestmöglichen Kontrast von Kernspintomografie-Aufnahmen zu bestimmen. Damit ist es nun möglich, die Aufnahmeverfahren gezielt weiter zu entwickeln.

Exotische Quantenwelt

Für Techniken wie die Kernspin-Spektroskopie, die heute eine der wichtigsten Analysemethode der modernen Chemie darstellt, oder eine zukünftige Quantencomputer-Technologie, ist jedoch ein besseres Verständnis der optimalen Steuerung von miteinander gekoppelten Spins unverzichtbar. Diese können sich gegenseitig beeinflussen, was zu noch unanschaulicheren Effekten führt.

Beispielsweise gibt es in der Quantenwelt das Phänomen der Superposition. Übertragen in unsere Welt hieße das, dass der Kernspin sich gleichzeitig rechts- und linksherum drehen kann. Die Verschränkung von Quantenzuständen ist ein weiteres Beispiel. Einstein bezeichnete sie als „spukhafte Fernwirkung“, doch der „Spuk“ hat großes technisches Potenzial, das von Präzisionsmessungen bis hin zu sicherer Datenübertragung reicht.

Ein Bild sagt mehr als tausend Worte

Die Quanteneigenschaften gekoppelter Kernspins werden mathematisch durch eine sogenannte Dichtematrix beschrieben. „Dies sind abstrakte Zahlenkolonnen, denen man nur mit sehr viel Erfahrung ansehen kann, welche Informationen in ihnen stecken“, sagt Steffen Glaser. Nun hat Glaser eine Visualisierungsmöglichkeit geschaffen, mit der diese Matrix in anschauliche Bilder umgesetzt wird.

Das DROPS (discrete representation of operators for spin systems) genannte Verfahren bildet die Dichtematrix in Form dreidimensionaler, Tröpfchen ähnlicher Objekte ab. Sie spiegeln alle zu einem bestimmten Zeitpunkt vorhandenen quantenmechanischen Wechselbeziehungen und Verschränkungen zwischen den Spins wider.

App für Smartphone und Tablet

Um Entstehung, Verformung und Rotation von Spin-Spin-Korrelationen unter dem Einfluss steuerbarer magnetischer Felder in Echtzeit zeigen zu können, entwickelte Steffen Glaser zusammen mit seinem Sohn ein Programm für Smartphone und Tablet-Computer.

„Dieses Programm erlaubt einen intuitiv verständlichen Zugang zum faszinierenden Wissenschaftszweig der Quanten-Kontrolltheorie für jeden, der sich mit der optimalen Steuerung und Nutzung von Quantenphänomenen beschäftigt.“ Die App „SpinDrops“ ist im App-Store für Nutzer von iPhones und iPads zum kostenlosen Download verfügbar.

„Unabhängig von Anwendungen in Lehre und Forschung ist die neuartige Visualisierung der Wechselbeziehungen zwischen Spins auch ästhetisch reizvoll“, sagt Steffen Glaser. In der Ausstellung „Science and Technology Meet Art“ am Institute for Advanced Study der TU-München ist eine solche Visualisierung ausgestellt. Bei der „Langen Nacht der Wissenschaften“ des Campus Garching am 27. Juni 2015 können Interessierte diese Ausstellung besuchen.

Publikationen:

Visualizing operators of coupled spin systems
Ariane Garon, Robert Zeier, and Steffen J. Glaser
PHYSICAL REVIEW A 91, 042122 (2015) – DOI:10.1103/PhysRevA.91.042122

Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging
M. Lapert, Y. Zhang, M. A. Janich, S. J. Glaser, D. Sugny
nature Scientific Reports, Aug. 20, 2012 - DOI: 10.1038/srep00589

Kontakt:

Prof. Dr. Steffen Glaser
Technische Universität München
Lehrstuhl für Organische Chemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13759 – E-MailInternet

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Künstliche Intelligenz hilft Physikern bei der Suche nach der optimalen Beschreibung von Quantenphänomenen.

Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und...

Erster Beweis, dass Quantencomputer überlegen sind

Sie werden als die Computing-Verheißung der Zukunft gehandelt: Quantencomputer. Dass sie tatsächlich Vorteile gegenüber konventionellen Rechnern haben, haben ein Wissenschaftler der Technischen Universität München (TUM) und...

Der Helixnebel, 700 Lichtjahre von der Erde entfernt. Der Cluster ORIGINS erforscht die Entstehung des Universums und des ersten Lebens. (Bild: ESO/VISTA/J. Emerson)

TUM mit vier Exzellenzforschungsclustern erfolgreich

Abermals startet die Technische Universität München (TUM) erfolgreich in die hochwettbewerbliche Exzellenzinitiative des Bundes und der Länder. Vier Forschungscluster der TUM und ihrer Kooperationspartner werden in den...

Zukunftsvision: Quantencomputer mit Chips aus Diamant und Graphen – Grafik: Christoph Hohmann / NIM

Zentrum für Quantentechnik kommt nach Garching

Auf dem Campus Garching hat sich in den letzten Jahren ein weltweit beachteter Forschungsschwerpunkt zu Quantentechnologien entwickelt. Der Wissenschaftsrat befürwortet nun ein neues Zentralinstitut der Technischen...

Eine neue Methode erlaubt, die Verschränkung von quantenmechnischen Vielteilchensystemen zu messen.

Empfindliche Quantenteilchen

Für technische Anwendungen spielt die quantenmechanische Verschränkung von Teilchen eine wichtige Rolle. Bisher war sie jedoch nur schwer experimentell messbar. Physiker der Technischen Universität München (TUM), der...

Mit flüssigem Stickstoff gekühlter Hochtemperatur-Supraleiter. Die Voraussage, ob und wann ein Material supraleitend wird, hängt entscheidend davon ab, ob Anregungen Energie benötigen oder nicht. Eine Vorausberechnung dieser Eigenschaft ist jedoch schwieriger als gedacht, da sich ein zugrunde liegendes mathematisches Problem als prinzipiell unlösbar erwiesen hat. - Foto: Ulli Benz / TUM

Fundamentales Problem der Quantenphysik unlösbar

Ein vielen fundamentalen Fragen der Teilchen- und Quantenphysik zugrunde liegendes mathematisches Problem ist nachweislich unlösbar. Den Beweis dafür haben Wissenschaftler der Technischen Universität München (TUM), des...

Elektron im Quanten-Punkt, beeinflusst von Kernspins der Umgebung – Grafik: Fabian Flassig / TUM

Quantencomputer aus gängigen Halbleitermaterialien

Physiker der Technischen Universität München, des Los Alamos National Laboratory und der Universität Stanford (USA) spürten in Halbleiter-Nanostrukturen Mechanismen auf, aufgrund derer gespeicherte Informationen verloren...