TUM – Technische Universität München Menü
Wissenschaftler der TUM konnten erstmals klären, wie bei der Herstellung von Schokolade die Zutaten auf molekularer Ebene miteinander interagieren. (Foto: Joanna Wnuk/ Fotolia)
Wissenschaftler der TUM konnten erstmals klären, wie bei der Herstellung von Schokolade die Zutaten auf molekularer Ebene miteinander interagieren. (Foto: Joanna Wnuk/ Fotolia)
  • Forschung

Wie wirkt Lecithin bei der Herstellung von Schokolade?

Molekular-Modelle weisen Weg zum Schokoladenschmelz

Für viele ist sie unwiderstehlich und liebste Süßigkeit: die Schokolade. Was zu ihrem Erfolg beigetragen hat, ist vermutlich nicht nur ihr Geschmack, sondern ebenso der zerfließende Schmelz, den das Conchieren erreicht und der Zusatz von Lecithin. Wissenschaftler der TUM konnten erstmals klären, wie dabei alle Zutaten auf molekularer Ebene miteinander interagieren und was der Schokolade zu ihrer Textur verhilft.

„Es gibt viele Hypothesen, wie das Lecithin bei der Produktion von Schokolade wirkt“, erläutert Professor Heiko Briesen vom TUM-Lehrstuhl für Systemverfahrenstechnik die Studie – doch was genau auf der Ebene der Moleküle passiert, war bislang unklar. Ebenso war offen, welche Sorte Lecithin dabei am vorteilhaftesten die Fließfähigkeit der Schokoladenmasse beeinflusst. Um sich dem zu nähern, haben TUM-Wissenschaftler mit einer so genannten molekulardynamischen Simulation gearbeitet. Diese Simulationen nutzen Modelle, welche die Wechselwirkungen von Atomen und Molekülen nachbilden.

Verbindung Lecithin mit Zucker ist entscheidend


Entscheidend bei ihren Untersuchungen seien die vorab gestellten Fragen gewesen, sagt Professor Briesen: „Unsere Frage war, wie stark binden unterschiedliche Lecithine an die Zuckerpartikel in der Schokolade?“ Es stellte sich heraus, dass die verschiedenen Lecithine – es wurden sechs verschiedene beobachtet – unterschiedlich gut mit dem Zucker „anbandelten“.

Molekulardynamik kann Lebensmittelforschung unterstützen

Für die Schokoladenherstellung liefern die Erkenntnisse der TUM-Wissenschaftler wertvolle Hinweise, zumal bislang hauptsächlich Lecithin aus Sojabohnen verwendet wird. Da das Angebot gentechnisch unveränderten Sojas jedoch abnimmt, kann die molekulare Simulation künftig Lebensmittelchemiker vor langwierigen Trial-and-Error-Tests bewahren, welches Lecithin sie zur Schokoladenherstellung wählen sollten. „Ich bin zuversichtlich, dass die Molekulardynamik in Zukunft die Lebensmittelforschung stark unterstützen wird“, sagt Briesen.

Podcast zum Thema auf Bayern 2:Was Schokolade Schmelz verleiht

Die Studie im Web:http://iopscience.iop.org/article/10.1088/0022-3727/48/38/384002

Publikation: M. Kindlein, M. Greiner, E. Elts und H. Briesen: Interactions between phospholipid head groups and a sucrose crystal surface at the cocoa butter interface, Journal of Physics 2015.

Kontakt:

Prof. Heiko Briesen
Lehrstuhl für Systemverfahrenstechnik
Tel. +49 (8161) 71 - 3272
heiko.briesen(at)mytum.de

Corporate Communications Center

Technische Universität München Sabine Letz
sabine.letz(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Im Speichel sind verschiedene, antimikrobiell wirkende Moleküle enthalten. (Bild: iStock/Cunaplus M. Faba)

Nicht nur gut für den Geschmack

Zitronensäure und scharf-schmeckendes 6-Gingerol aus Ingwer verleihen nicht nur Speisen und Getränken eine besondere Geschmacksnote. Beide Stoffe stimulieren auch die molekularen Abwehrkräfte im menschlichen Speichel. Dies...

Welche Geschmacks- und Aromastoffe stecken in Parmesan? Dem sind TUM-Wissenschaftler nun nachgegangen. (Foto: TUM/ A. Battenberg)

Komplexer Käse

Was wäre italienische Pasta ohne Parmesan? Kein anderer Käse verleiht Gerichten einen vergleichbaren Geschmack. Aber warum? Dieser Frage sind Chemiker/innen der Technischen Universität München (TUM) nachgegangen. Sie fanden...

Neue Analyseverfahren erkennen unbekannte Substanzen im Wasser.

Internationale Fahndung nach unbekannten Molekülen

Schadstoffe versickern im Boden, Reinigungsmittel laufen in den Abguss: Wir alle bringen Chemikalien in den Wasserkreislauf ein. Dazu kommen noch natürliche Stoffe - In einer einzigen umweltrelevanten Wasserprobe befinden...

Die Nanopore begrenzt die Bewegungsmöglichkeiten des eingefangenen Moleküls – Bild: C.-A. Palma / TUM

Bewegte Moleküle schreiben Buchstaben

Wer Hochleistungsmaterialien für Gasspeicherung, thermische Isolierung oder Nanomaschinen entwickeln möchte, muss ihre thermischen Eigenschaften bis hinunter auf die molekulare Ebene verstehen. Doch die Thermodynamik,...