Schon ein Quantensystem mit 51 Qbits lässt sich mit Supercomputern kaum mehr berechnen – mit Quantensimulatoren ist das problemlos möglich. Wie man deren Ergebnisse dennoch überprüfen kann, hat nun ein Forschungsteam um Prof. Michael Knap (im Bild) und Prof. Dr. Christian Roos herausgefunden.
Schon ein Quantensystem mit 51 Qbits lässt sich mit Supercomputern kaum mehr berechnen – mit Quantensimulatoren ist das problemlos möglich. Wie man deren Ergebnisse dennoch überprüfen kann, hat nun ein Forschungsteam um Prof. Michael Knap (Bild) und Prof. Dr. Christian Roos herausgefunden.
Bild: Andreas Heddergott / TUM
  • Quantentechnologie, Forschung
  • Lesezeit: 3 MIN

Quantensimulator liefert Einblicke in die Dynamik komplexer QuantensystemeQuantensysteme und Bienenflug

Mehr als zwei Billiarden verschiedene Zustände kann ein Quantensystem mit nur 51 geladenen Atomen einnehmen. Sein Verhalten zu berechnen, ist für einen Quantensimulator ein Kinderspiel. Doch nachzuprüfen, ob das Ergebnis stimmt, ist selbst mit aktuellen Supercomputern kaum zu schaffen. Ein Forschungsteam der Universität Innsbruck und der Technischen Universität München (TUM) hat nun gezeigt, wie solche Systeme sich mit im 18. Jahrhundert entwickelten Gleichungen überprüfen lassen.

Auf den ersten Blick erscheint ein System aus 51 Ionen überschaubar. Doch selbst wenn man jedes dieser geladenen Atome nur zwischen zwei Zuständen hin und her schaltet, ergeben sich mehr als zwei Billiarden verschiedene Anordnungen, die das System einnehmen kann.

Mit herkömmlichen Computern ist das Verhalten eines solchen Systems daher kaum mehr zu berechnen. Zumal eine einmal ins System eingebrachte Anregung sich auch sprunghaft weiterbewegen kann. Sie folgt einer als Lévy-Flug bekannten Statistik.

Charakteristisch für solche Bewegungen ist, dass neben den zu erwartenden kleineren Sprüngen immer wieder auch wesentlich größere auftreten. Auch beim Flug von Bienen und bei heftigen Börsenbewegungen kann man dieses Verhalten beobachten.

Simulation der Quantendynamik: klassisch ein schwieriges Problem

Während die Simulation der Dynamik eines komplexen Quantensystems selbst für klassische Superrechner eine harte Nuss ist, ist sie für Quantensimulatoren ein Kinderspiel. Doch wie soll man die Ergebnisse eines Quantensimulators überprüfen, wenn man sie nicht nachrechnen kann?

Beobachtungen an Quantensystemen legten nahe, dass sich zumindest das längerfristige Verhalten solcher Quantensysteme eventuell mit Gleichungen beschreiben lassen könnte, wie sie schon die Gebrüder Bernoulli im 18. Jahrhundert zur Beschreibung des Verhaltens von Flüssigkeiten entwickelt hatten.

Um diese Hypothese zu testen, nutzte das Team ein Quantensystem, das die Dynamik von Quantenmagneten simulierte. An diesem konnten sie nachweisen, dass das System nach einer Anfangsphase, in der quantenmechanische Effekte dominieren, tatsächlich mit Gleichungen beschrieben werden kann, wie sie aus der Fluiddynamik bekannt sind.

Darüber hinaus zeigten sie, dass dieselben Lévy-Flug-Statistiken, die die Suchstrategien von Bienen beschreiben, auch die fluiddynamischen Prozesse in diesem Quantensystem beschreiben.

Gefangene Ionen als Plattform für kontrollierte Quantensimulationen

Der Quantensimulator wurde am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften auf dem Campus der Universität Innsbruck aufgebaut. „Unser System simuliert effektiv einen Quantenmagneten, indem es den Nord- und Südpol eines Elementarmagneten durch zwei Energieniveaus der Ionen darstellt“, sagt Manoj Joshi, Wissenschaftler am IQOQI Innsbruck.

„Unser größter technischer Fortschritt bestand darin, dass es uns gelungen ist, jedes der 51 Ionen individuell ansteuern zu können“, erläutert Manoj Joshi. „Dadurch konnten wir die Dynamik beliebiger Anfangszustände untersuchen, was notwendig war, um die Entstehung der Fluiddynamik zu zeigen.“

„Während die Anzahl der Qubits und die Stabilität der Quantenzustände derzeit noch begrenzt ist, gibt es Fragen, für die wir die enorme Rechenleistung von Quantensimulatoren bereits heute nutzen können“, sagt Michael Knap, Professor für Kollektive Quantendynamik an der Technischen Universität München.

„In naher Zukunft werden Quantensimulatoren und Quantencomputer ideale Plattformen für die Erforschung der Dynamik komplexer Quantensysteme darstellen“, erläutert Michael Knap weiter. „Nun wissen wir, dass diese Systeme ab einem bestimmten Zeitpunkt den Gesetzmäßigkeiten der klassischen Fluiddynamik folgen. Gibt es starke Abweichungen davon, ist dies ein Indiz dafür, dass der Simulator nicht funktioniert.“

Publikationen:

Observing emergent hydrodynamics in a long-range quantum magnet
M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, C. F. Roos
Science, 13.05.2022 – DOI: 10.1126/science.abk2400

Mehr Informationen:

Die Forschungsarbeit wurde gefördert mit Mitteln der Europäischen Gemeinschaft im Rahmen des Forschungs- und Innovationsprogramm Horizon 2020 und des European Research Council (ERC), durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Munich Center for Quantum Science and Technology (MCQST), durch das Munich Quantum Valley (MQV), unterstützt durch die Bayerischen Staatsregierung aus Mitteln der Hightech Agenda Bayern Plus und die Technische Universität München über das Institute for Advanced Study, das aus Mitteln der deutschen Exzellenzinitiative und der Europäischen Union gefördert wird. Weitere Unterstützung kam von der Max-Planck-Gesellschaft (MPG) im Rahmen der International Max Planck Research School for Quantum Science and Technology (IMPRS-QST), vom Österreichischen Wissenschaftsfonds und der Institut für Quanteninformation GmbH.

Die Co-Autoren Prof. Michael Knap (TU München) und Prof. Rainer Blatt (Universität Innsbruck) engagieren sich im „Munich Quantum Valley“, einer Initiative deren Ziel es ist, in den kommenden fünf Jahren ein Zentrum für Quantencomputing und Quantentechnologie (ZQQ) aufzubauen. Hier sollen auf Basis supraleitender Qubits sowie auf Basis von Qubits aus Ionen und Atomen drei Quantencomputer aufgebaut werden. Mitglied des Munich Quantum Valley e.V. sind die Bayerische Akademie der Wissenschaften (BAdW), die Fraunhofer-Gesellschaft (FhG), die Deutsche Gesellschaft für Luft- und Raumfahrt (DLR), die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), die Ludwig-Maximilians-Universität München (LMU), die Max-Planck-Gesellschaft (MPG) und die Technische Universität München (TUM).

Technische Universität München

Corporate Communications Center Andreas Battenberg
andreas.battenberg(at)m-q-v.de

Kontakte zum Artikel:

Prof. Dr. Michael Knap
Professur für Kollektive Quantendynamik
Technische Universität München
James-Franck-Str. 1, 85748 Garching
Tel.: +49 89 289 53777 – E-Mail: michael.knap(at)ph.tum.de

Prof. Dr. Christian Roos
Institut für Experimentalphysik
Universität Innsbruck
Technikerstraße 25, 6020 Innsbruck
Tel.: +43 512 507 4728 – E-Mail: christian.roos@uibk.ac.at

Weitere Artikel zum Thema auf www.tum.de:

Mit der feierlichen Unterzeichnung der Gründungsurkunde ist das Munich Quantum Valley am Donnerstag nun auch formal als Verein gegründet worden. Gründungspartner des Munich Quantum Valley sind neben der TUM die Ludwig-Maximilians-Universität München (LMU) und die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sowie die Bayerische Akademie der Wissenschaften, das Deutsche Zentrum für Luft- und Raumfahrt, die Fraunhofer Gesellschaft und die Max-Planck-Gesellschaft.

Das Munich Quantum Valley geht an den Start

Als eine der Gründungseinrichtungen leistet die Technische Universität München (TUM) entscheidende Beiträge zum Aufbau des Munich Quantum Valleys. Ziel ist es, gemeinsam mit weiteren Partnern aus Wissenschaft und…

Die Co-Autoren Prof. Frank Pollmann, Prof. Michael Knap und Yujie Liu im Physik-Department auf dem Forschungscampus Garching der Technischen Universität München

Simulationen mit Quantencomputer

Während die Anzahl der Qubits und die Stabilität der Quantenzustände die derzeitigen Quantencomputer noch begrenzen, gibt es Fragen, in denen diese Prozessoren ihre enorme Rechenleistung bereits nutzen können. In…

Visualisierung der Entstehung eines Quasiteilchens – Bild: Harald Ritsch / IQOQI

Quasiteilchen in Zeitlupe

Bewegt sich ein Elektron in einem Festkörper, polarisiert es seine Umgebung. Die genaue Kenntnis der Wechselwirkung zwischen Elektron und Umgebung ist der Schlüssel zur Entwicklung zukünftiger, noch leistungsfähigerer…