TUM – Technische Universität München Menü
Ausschnitt aus dem Gefäßgeflecht im Gehirn einer Maus.
Ausschnitt aus dem Gefäßgeflecht im Gehirn einer Maus. Die Farben stehen für unterschiedliche Durchmesser der Gefäße: Rot für die größten, blau für die kleinsten.
Bild: Paetzold / TUM, Ertürk/LMU Klinikum
  • Forschung
  • Lesezeit: 3 MIN

Kombination von biochemischen Methoden und KI zeigt auch feinste KapillarenGefäße des gesamten Gehirns analysiert

Erkrankungen des Gehirns gehen oft mit typischen Veränderungen der Blutgefäße einher. Münchner Wissenschaftlerinnen und Wissenschaftler haben jetzt ein Verfahren vorgestellt, mit dem sich die Strukturen und eventuelle krankhafte Veränderungen aller Gefäße – auch der feinsten Kapillaren – analysieren lassen. Sie haben mit diesem Verfahren, das auf einer Kombination von biochemischen Methoden und Künstlicher Intelligenz beruht, zunächst die gesamten Gefäße im Gehirn einer Maus dargestellt.

Veränderungen in den Blutgefäßen kennzeichnen etliche schwere Hirnerkrankungen – von der traumatischen Hirnverletzung bis zum Schlaganfall. Selbst bei Erkrankungen wie der Alzheimerschen Demenz sind die feinen Kapillaren verändert. Kurzum: Die Analyse der Blutgefäße ist wesentlich, um sowohl die normale als auch die krankhafte Gehirnfunktion zu verstehen. „Wir sind diesem Ziel jetzt deutlich näher gekommen“, erklärt Ali Ertürk, Direktor des Instituts für Tissue Engineering und Regenerative Medizin am Helmholtz Zentrum München und Principal Investigator am Institut für Schlaganfall- und Demenzforschung des LMU Klinikums.

Organe werden durchsichtig

Zunächst ist es Ertürks Team gelungen, mit hochauflösender Fluoreszenz-Mikroskopie, das Gefäßsystem der Gehirne von Mäusen abzubilden, ohne die Proben kleinteilig zerschneiden zu müssen. Dafür hat das Team die Technik des "Tissue Clearing" weiterentwickelt. Dabei werden biologische Gewebe mit speziellen Farbstoffen behandelt, die sie für die Fluoreszenz-Mikroskopie transparent machen. "Doch bisher war es mit dieser Technik nur möglich, entweder die großen oder die kleinen Gefäße des Gehirns darzustellen", sagt Mihail Ivilinov Todorov, Doktorand bei Ertürk. Deshalb haben die Münchner Wissenschaftler erstmals zwei Farbstoffe kombiniert. „So haben wir einige schöne Bilder der Gehirngefäße inklusive der Kapillaren bekommen“, erklärt der Biologe weiter.

Künstliche Intelligenz analysiert Gefäßnetzwerk

Mithilfe Künstlicher Intelligenz haben Forschende aus der Arbeitsgruppe von Björn Menze, Professor für Maschinelles Lernen in der Biomedizinischen Bildgebung an der Technischen Universität München (TUM), auf Grundlage dieser Bilder das gesamte Gefäßnetzwerk des Gehirns bis in seine feinsten Verästelungen rekonstruiert. Eine solche Rekonstruktion liefert nicht nur Bilder, sondern macht es insbesondere möglich, die Gefäßstrukturen quantitativ auszuwerten. „So können wir zum Beispiel für verschiedene Hirnareale statistisch erfassen, welche Durchmesser die Gefäße haben oder wie sie sich verzweigen“, sagt Johannes Paetzold, Doktorand in Menzes Arbeitsgruppe.

„Wir haben über die letzten Jahre einen Deep-Learning-Algorithmus entwickelt, der darauf spezialisiert ist, in medizinischen Bildern Gefäße zu erkennen“, erklärt Menze. „Diesen haben wir hier erstmals auf ein gesamtes Gehirn angewandt.“ Dabei konnte der Algorithmus zuverlässig zwischen Gefäßen und umliegendem Gewebe unterscheiden, obwohl in dem Fluoreszenz-Bild nicht alle Bereiche gut ausgeleuchtet waren und Lichtreflexe oder andere Fehler die Darstellung verfälschten.

Hirnkrankheiten verstehen und diagnostizieren

Mihail Ivilinov Todorov plant, die statistischen Daten für die Erforschung von Gefäßveränderungen bei Schlaganfällen zu nutzen. Björn Menze hingegen möchte die globalen Strukturen des Gefäßsystems untersuchen und zum Beispiel verstehen, welche Rolle anatomisch bedingte Unterschiede bei Hirnerkrankungen spielen.

Aber auch im klinischen Alltag könnte die Methode zum Einsatz kommen: „Die kleinen Gewebeproben aus menschlichen Tumoren lassen sich mit unserem System wahrscheinlich exakter untersuchen als bisher möglich“, erklärt Ertürk. Krebsgewebe ist durchzogen von Gefäßen – und die Analyse ihrer Struktur hilft dabei, das Stadium eines Tumors zu bestimmen.

  • Mit hochauflösender Fluoreszenz-Mikroskopie erstelltes Bild des kompletten Gefäßsystems im Gehirn einer Maus.

    Mit hochauflösender Fluoreszenz-Mikroskopie erstelltes Bild des kompletten Gefäßsystems im Gehirn einer Maus. Die Gefäße wurden dafür mit einer neuen Methode eingefärbt, während das übrige Gewebe mithilfe von „Tissue Clearing“ durchsichtig gemacht wurde. Dabei wurden zwei Farbstoffe verwendet, die die großen bzw. kleinen Gefäße (im Bild violett bzw. grün) sichtbar machen.

    Bild: Ertürk/LMU Klinikum, Paetzold / TUM
  • Detail aus dem mithilfe von Deep Learning (Künstliche Intelligenz) rekonstruierten Gefäßnetz im Gehirn einer Maus.

    Detail aus dem mithilfe von Deep Learning (Künstliche Intelligenz) rekonstruierten Gefäßnetz im Gehirn einer Maus. Grundlage der Rekonstruktion war die neue Bildgebung durch hochauflösende Fluoreszenz-Mikroskopie.

    Bild: Paetzold / TUM, Ertürk/LMU Klinikum
  • Rekonstruktion des kompletten Gefäßgeflechts im Gehirn einer Maus mithilfe Künstlicher Intelligenz. Der verwendete KI-Algorithmus macht es unter anderem möglich, die Durchmesser aller Blutgefäße zu bestimmen.

    Rekonstruktion des kompletten Gefäßgeflechts im Gehirn einer Maus mithilfe Künstlicher Intelligenz. Der verwendete KI-Algorithmus macht es unter anderem möglich, die Durchmesser aller Blutgefäße zu bestimmen. Rot steht für die größten Durchmesser, blau für die kleinsten.

    Bild: Paetzold / TUM, Ertürk/LMU Klinikum

Publikationen:

Machine learning analysis of whole mouse brain vasculature
Mihail Ivilinov Todorov, Johannes Christian Paetzold, Oliver Schoppe, Giles Tetteh, Suprosanna Shit, Velizar Efremov, Katalin Todorov-Völgyi, Marco Düring, Martin Dichgans, Marie Piraud, Bjoern Menze & Ali Ertürk
Nature Methods (2020). DOI: 10.1038/s41592-020-0792-1

Corporate Communications Center

Technische Universität München Paul Piwnicki
paul.piwnicki(at)tum.de
Tel: 089 289 10808

Kontakte zum Artikel:

Dr. Ali Ertürk
LMU Klinikum München – Institut für Schlaganfall- und Demenzforschung (ISD)
Helmholtz Zentrum München – Institute for Tissue Engineering and Regenerative Medicine
E-Mail: ali.ertuerk(at)med.uni-muenchen.de

Prof. Dr. Björn Menze
Technische Universität München (TUM)
Professur für Maschinelles Lernen in der Biomedizinischen Bildgebung
Munich School of BioEngineering und Zentralinstitut für Translationale Krebsforschung (TranslaTUM)
Tel: +49 89 289 10930
E-Mail: bjoern.menze(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Computerillustration von Metastasen in Körpergewebe

Mit KI die Ausbreitung von Krebs verstehen

Forscherinnen und Forscher der Technischen Universität München (TUM), des Helmholtz Zentrum München und der Ludwig-Maximilians-Universität München (LMU) haben einen Algorithmus entwickelt, der automatisiert Metastasen...

Die Autoren Mathias Wilhelm, Tobias Schmidt und Siegfried Gessulat am Lehrstuhl für Proteomik und Bioanalytik (Prof. Dr. Bernhard Küster).

Künstliche Intelligenz beflügelt Proteomforschung

Mit dem Einsatz von künstlicher Intelligenz ist es Forschenden der Technischen Universität München (TUM) gelungen, die massenhafte Analyse von Eiweißen aus beliebigen Organismen deutlich schneller als bisher und praktisch...

Das Bild zeigt Prof. Fabian Theis, beim Schreiben von Formeln an eine Tafel.

Bundesweites KI-Netzwerk mit Zentrale in München

Informatik, Robotik und Maschinelle Intelligenz sind zentrale Forschungsbereiche an der Technischen Universität München (TUM). Jetzt vernetzt sich die TUM in der neuen Helmholtz Artificial Intelligence Cooperation Unit...

Gegenüberstellung eines Fluoreszenzbildes eines Zebrafischgehirns und einer  optoakkustisch erzeugten Aufnahme des Organs. (Bild: Razansky / TUM)

Dem Gehirn bei der Arbeit zuschauen

Live dabei sein, wenn Nervenzellen miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es, die Aktivierung von größeren Nervenverbänden – bis hin zu Gehirnen von kleinen...