• Künstliche Intelligenz, Forschung
  • Lesezeit: 4 MIN

Medizinischer Diagnose-Algorithmus erkennt Pneumonien in RöntgenbildernNeue KI-Technik wahrt Privatsphäre

Künstliche Intelligenz (KI) kann medizinisches Personal in der Diagnostik unterstützen. Sie zu trainieren erfordert allerdings den Zugriff auf ein schützenswertes Gut: medizinische Daten. Ein Forschungsteam der Technischen Universität München (TUM) hat eine Technik entwickelt, die die Privatsphäre der Patientinnen und Patienten beim Trainieren der Algorithmen schützt. Anwendung findet die Technik nun erstmals in einem Algorithmus, der in Röntgenbildern Pneumonien erkennt.

Die digitale Medizin eröffnet heute bisher nicht dagewesene Möglichkeiten. Sie kann beispielsweise frühe Hinweise auf Tumore zu geben. Wie gut neue KI-Algorithmen sind, hängt allerdings von der Menge und der Qualität der Daten ab, an denen sie lernen.

Daniel Rückert ist Professor für Artificial Intelligence in Healthcare and Medicine.
Daniel Rückert ist Professor für Artificial Intelligence in Healthcare and Medicine.
Bild: A. Heddergott / TUM

Um Algorithmen an möglichst vielen Daten zu trainieren, ist es gängige Praxis, persönliche Daten von Patientinnen und Patienten zwischen Kliniken auszutauschen indem eine Kopie der Daten an die Kliniken gesendet wird, in denen der Algorithmus trainiert wird. Zum Datenschutz werden dabei zumeist die Verfahren der Anonymisierung und Pseudonymisierung angewendet – ein Vorgehen, das auch in der Kritik steht. „Es hat sich in der Vergangenheit mehrfach gezeigt, dass diese Vorgehensweisen keinen ausreichenden Schutz für die Gesundheitsdaten von Patientinnen und Patienten bieten“, sagt Daniel Rückert, Alexander-von-Humboldt-Professor für Artificial Intelligence in Healthcare and Medicine an der TUM.

„Wir haben es geschafft, Modelle zu trainieren, die genaue Ergebnisse liefern und gleichzeitig hohe Anforderungen an Datenschutz und Privatsphäre erfüllen.”— Daniel Rückert

Schlaue Algorithmen unterstützen Ärztinnen und Ärzte

Aus diesem Grund hat ein interdisziplinäres Team der TUM gemeinsam mit Forschenden des Imperial College London und der Non-Profit-Organisation OpenMined eine bislang einzigartige Kombination an Privatsphäre-wahrenden Verfahren für die KI-gestützte Diagnostik an radiologischen Bilddaten entwickelt. In der Fachzeitschrift Nature Machine Intelligence stellte das Team nun die erfolgreiche Anwendung vor: Ein Deep-Learning-Algorithmus, mithilfe dessen sich Pneumonien in Röntgenbildern von Kindern klassifizieren lassen.

„Wir haben unsere Modelle gegen spezialisierte Radiologen getestet. Sie wiesen zum Teil eine vergleichbare oder höhere Genauigkeit in der Diagnose verschiedener Arten von Lungenentzündungen bei Kindern auf“, sagt Prof. Marcus R. Makowski, Direktor des Instituts für Radiologie am Klinikum rechts der Isar der TUM.

Die Daten bleiben vor Ort

„Damit die Daten der Patientinnen und Patienten sicher sind, sollten sie die jeweilige Klinik nie verlassen“, sagt Projektleiter und Erstautor Georgios Kaissis vom Institute for AI and Informatics in Medicine der TUM. „Wir haben für unseren Algorithmus das sogenannte Federated Learning verwendet, bei dem nicht die Daten geteilt werden, sondern der Deep-Learning Algorithmus. Unsere Modelle wurden in der jeweiligen Klinik mit den Daten vor Ort trainiert und danach wieder zu uns zurückgesendet. Die Besitzer mussten ihre Daten also nicht herausgeben und haben die komplette Kontrolle darüber behalten“, erklärt Erstautor Alexander Ziller, Forscher am Institut für Radiologie.

„Damit die Daten der Patientinnen und Patienten sicher sind, sollten sie die Klinik, in der sie gesammelt wurden, nie verlassen.”— Georgios Kaissis

Keine Rückschlüsse auf die Daten einzelner Personen

Projektleiter PD Dr. Georgios Kaissis.
Projektleiter PD Dr. Georgios Kaissis.
Bild: A. Heddergott / TUM

Damit sich keine Rückschlüsse auf die Daten einer bestimmten Institution ziehen lassen, mit denen der Algorithmus trainiert wurde, wandte das Team eine weitere Technik an: Die sichere Aggregierung. „Wir haben die Algorithmen verschlüsselt zusammengeführt und erst entschlüsselt, nachdem sie mit den Daten aller beteiligten Institutionen trainiert waren“, erklärt Kaissis. Damit keine Informationen über einzelne Patientinnen und Patienten aus den Datensätzen herausgefiltert werden können – also die sogenannte Differential Privacy gewahrt ist – wandten die Forscher zusätzlich eine dritte Technik auf das Training des Algorithmus an. „Schlussendlich können zwar statistische Zusammenhänge aus den Datensätzen herausgelesen werden, nicht aber die Beiträge einzelner Personen zum Datensatz“, sagt Kaissis.

 

Erstmalige Kombination der Privatsphäre-wahrenden Methoden

„Die Methoden, die wir genutzt haben, sind zwar in früheren Studien schon zum Einsatz gekommen“, sagt Daniel Rückert, „bislang fehlten aber größere Studien an echten klinischen Daten. Durch die gezielte technische Weiterentwicklung und die Zusammenarbeit zwischen Spezialisten aus Informatik und Radiologie haben wir es geschafft, Modelle zu trainieren, die genaue Ergebnisse liefern und gleichzeitig hohe Anforderungen an Datenschutz und Privatsphäre erfüllen.“

Rickmer Braren, stellvertretender Direktor des Instituts für Radiologie, ergänzt: „Oft wird behauptet, dass Datenschutz und Datennutzung im Widerspruch zueinander stehen. Wir zeigen jetzt: Das muss nicht sein.“ Die Methode lasse sich auch auf andere medizinische Bilddaten als Röntgenbilder anwenden, sagen die Wissenschaftler. Zum Beispiel auf Sprach- und Textdaten.

„Um gute KI-Algorithmen trainieren zu können, brauchen wir gute Daten.”— Georgios Kaissis

Datenschutz eröffnet enormes Potential für die digitale Medizin

Letztautor PD Dr. Rickmer Braren.
Letztautor PD Dr. Rickmer Braren.
Bild: A. Heddergott / TUM

Die Kombination der neuartigen Datenschutz-Verfahren erleichtert auch die Zusammenarbeit zwischen Institutionen, wie das Team in einer bereits 2020 in Nature Machine Intelligence erschienenen Publikation zeigte. Denn mit der Privatsphäre-wahrenden KI können ethische, rechtliche und politische Hürden genommen werden – somit könne man die KI breit anwenden und das sei enorm wichtig für die Erforschung seltener Erkrankungen, sagt Braren.

Die Wissenschaftler sind überzeugt, dass ihre Technik zur Wahrung der Privatsphäre einen wichtigen Beitrag für den Fortschritt der digitalen Medizin leisten kann. „Um gute KI-Algorithmen trainieren zu können, brauchen wir gute Daten“, sagt Kaissis. „Und diese erhalten wir nur, wenn wir die Privatsphäre der betroffenen Patientinnen und Patienten ausreichend schützen“, ergänzt Rückert. „Wir können mit Datenschutz also mehr zum Erkenntnisgewinn beitragen, als viele denken.“

Publikationen:

Kaissis, GA; Ziller A, Makowski, MR.; Rueckert, D.; Braren, R. et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence (2021). DOI: 10.1038/s42256-021-00337-8

Kaissis, GA.; Makowski, MR.; Rueckert, D.; Braren, R. et al. Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence 2, 305–311 (2020). DOI: 10.1038/s42256-020-0186-1

Mehr Informationen:

Mit der Berufung des Alexander-von-Humboldt-Professors Daniel Rückert und des neuen Direktors des Instituts für Radiologie Prof. Marcus R. Makowski konnte die TUM 2020 die KI-Forschung sowie deren Anwendung in der Radiologie nachhaltig stärken.

Technische Universität München

Corporate Communications Center Lisa Pietrzyk
lisa.pietrzyk(at)tum.de

Kontakte zum Artikel:

PD Dr. Rickmer F. Braren
Stellv. Direktor
Institut für Radiologie
Klinikum rechts der Isar der Technischen Universität München
Tel.: +49 89 4140 5627
rbraren(at)tum.de

PD Dr. Georgios Kaissis, MHBA
Oberarzt
Institut für Radiologie
Senior Research Scientist
Institute for AI and Informatics in Medicine
Klinikum rechts der Isar der Technischen Universität München
Tel.: +49 89 4140 5632
g.kaissis(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Computerillustration von Metastasen in Körpergewebe

Mit KI die Ausbreitung von Krebs verstehen

Forscherinnen und Forscher der Technischen Universität München (TUM), des Helmholtz Zentrum München und der Ludwig-Maximilians-Universität München (LMU) haben einen Algorithmus entwickelt, der automatisiert Metastasen...

Prof. Daniel Rückert

Siebte Humboldt-Professur für die TUM

Ein weiterer Erfolg im Wettbewerb um den höchstdotierten Forschungspreis Deutschlands für die Technische Universität München (TUM): Prof. Daniel Rückert, international renommierter Experte für den Einsatz von Künstlicher...

Mithilfe der Computerbiologie lassen sich Zellveränderungen berechnen.

KI sagt Behandlungserfolg bei Krankheiten voraus

Das Computermodell scGen sagt voraus, wie Zellen sich verhalten werden. Mithilfe Künstlicher Intelligenz (KI) bildet die Software die Reaktion einer Zelle auf eine Erkrankung oder auch deren Behandlung ab, ohne dafür...

Prof. Klaus A. Kuhn, Professor für Medizinische Informatik an der TUM, ist Konsortialleiter des Konsortiums DIFUTURE. (Bild: A. Eckert / TUM)

TUM führt neues Großprojekt in der digitalen Medizin

Digitale Patientendaten zusammenzuführen und auszuwerten, um Krankheiten besser zu verstehen und schneller individuell richtige Entscheidungen zu treffen – das ist das Ziel des Projekts DIFUTURE (Data Integration for Future...